Friday, October 30, 2015

539: 57, 58, 61, 62, 68, 72, 73, 74

Problem 57

Problem. The surface of a machine part is the region between the graphs of $y=|x|$ and $x^{2}+(y-k)^{2}=25$.
(a) Find k when the circle is tangent to the graph of $y=|x|$.
(b) Find the area of the surface of the machine part.
(c) Find the area of the surface of the machine part as a function of the radius r of the circle.

Solution. (a) The figure shows a square, which has a side of 5 (the radius). Therefore, the diagonal of the square is $5 \sqrt{2}$, which is k. So $k=5 \sqrt{2}$.
(b) The equation of the circle is $x^{2}+(y-5 \sqrt{2})^{2}=25$, so the equation of the bottom half is

$$
y=5 \sqrt{2}-\sqrt{25-x^{2}}
$$

The area of the right half of the surface is

$$
\begin{aligned}
A & =\int_{0}^{5 / \sqrt{2}}\left(\left(5 \sqrt{2}-\sqrt{25-x^{2}}\right)-x\right) d x \\
& =\left[5 \sqrt{2} x-\frac{25}{2} \arcsin \frac{x}{5}-\frac{1}{2} x \sqrt{25-x^{2}}-\frac{1}{2} x^{2}\right]_{0}^{5 / \sqrt{2}} \\
& =25-\frac{25}{2} \arcsin \frac{1}{\sqrt{2}}-\frac{1}{2} \cdot \frac{5}{\sqrt{2}} \sqrt{25-\frac{25}{2}}-\frac{25}{4} \\
& =\frac{25}{2}-\frac{25}{2} \frac{\pi}{4} \\
& =\frac{25}{2}\left(1-\frac{\pi}{4}\right)
\end{aligned}
$$

So the total area is

$$
25\left(1-\frac{\pi}{4}\right)
$$

Problem 58

Problem. The axis of a storage tank in the form of a right circular cylinder is horizontal. The radius and length of the tank are 1 meter and 3 meters, respectively.
(a) Determine the volume of fluid in the tank as a function of its depth d.
(b) Graph the function in part (a).
(c) Disign a dipstick for the tank with markings of $\frac{1}{4}, \frac{1}{2}$, and $\frac{3}{4}$.
(d) Fluid is entering the tank at a rate of $\frac{1}{4}$ cubic meter per second. Determine the rate of change of the depth of the fluid as a function of its depth d.
(e) Graph the function in part (d). When will the rate of change of the depth be a minimum?

Solution. (a) According to Exercise 56, the area of the cross-section (with $h=1-d$) is

$$
\text { Area }=\frac{\pi}{2}-\arcsin (1-d)-(1-d) \sqrt{2 d-d^{2}}
$$

So the volume of the fluid with depth d is

$$
\text { Volume }=3\left(\frac{\pi}{2}-\arcsin (1-d)-(1-d) \sqrt{2 d-d^{2}}\right)
$$

(b)

(c) We need to solve the equation

$$
\frac{\pi}{2}-\arcsin (1-d)-(1-d) \sqrt{2 d-d^{2}}=h
$$

for $h=\frac{1}{4}, \frac{1}{2}$, and $\frac{3}{4}$. When $h=\frac{1}{2}$, it is clear that $d=1$. And by symmetry, if we solve it for $h=\frac{1}{4}$, that will give us the solution for $h=\frac{3}{4}$ (when the tank is $3 / 4$ full, it is also $1 / 4$ empty).
Using numerical methods, we find that the tank is $\frac{1}{4}$ full when $d=0.596$ meters. Therefore, our dipstick has marks at 0.596, 1.0, and 1.404.
(d) Differentiate the equation

$$
V=3\left(\frac{\pi}{2}-\arcsin (1-d)-(1-d) \sqrt{2 d-d^{2}}\right)
$$

with respect to time t and get

$$
\begin{aligned}
\frac{d V}{d t} & =3\left(\frac{1}{\sqrt{2 d-d^{2}}}+\sqrt{2 d-d^{2}}-(1-d) \cdot \frac{1-d}{\sqrt{2 d-d^{2}}}\right) \frac{d d}{d t} \\
& =6 \sqrt{2 d-d^{2}}\left(\frac{d d}{d t}\right)
\end{aligned}
$$

We are given that $\frac{d V}{d t}=\frac{1}{4}$, so

$$
\begin{aligned}
\frac{1}{4} & =6 \sqrt{2 d-d^{2}}\left(\frac{d d}{d t}\right) \\
\frac{d d}{d t} & =\frac{1}{24 \sqrt{2 d-d^{2}}}
\end{aligned}
$$

(e) To minimize $\frac{d d}{d t}$, we must take its derivative, set it equal to 0 , and solve for d.

$$
\frac{d^{2} d}{d t^{2}}=-\frac{1}{24} \cdot \frac{1-d}{\left(2 d-d^{2}\right)^{3 / 2}}
$$

Clear, the solution to

$$
\frac{d^{2} d}{d t^{2}}=0
$$

is $d=1$, when the tank is half full.

Problem 61

Problem.

Solution.

Problem 63

Problem.
Solution.

Problem 68

Problem.
Solution.

Problem 72

Problem.
Solution.

Problem 73
Problem.
Solution.

Problem 74
Problem.
Solution.

